Quantum Physics
[Submitted on 14 Nov 2007 (v1), last revised 16 Nov 2007 (this version, v2)]
Title:Switching effect upon the quantum Brownian motion near a reflecting boundary
View PDFAbstract: The quantum Brownian motion of a charged particle in the electromagnetic vacuum fluctuations is investigated near a perfectly reflecting flat boundary, taking into account the smooth switching process in the measurement. Constructing a smooth switching function by gluing together a plateau and the Lorentzian switching tails, it is shown that the switching tails have a great influence on the measurement of the Brownian motion in the quantum vacuum. Indeed, it turns out that the result with a smooth switching function and the one with a sudden switching function are qualitatively quite different. It is also shown that anti-correlations between the switching tails and the main measuring part plays an essential role in this switching effect. The switching function can also be interpreted as a prototype of an non-equilibrium process in a realistic measurement, so that the switching effect found here is expected to be significant in actual applications in vacuum physics.
Submission history
From: Masafumi Seriu [view email][v1] Wed, 14 Nov 2007 14:06:24 UTC (93 KB)
[v2] Fri, 16 Nov 2007 01:43:46 UTC (93 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.