Mathematics > Functional Analysis
[Submitted on 14 Nov 2007 (v1), last revised 25 Nov 2007 (this version, v2)]
Title:Block Toeplitz determinants, constrained KP and Gelfand-Dickey hierarchies
View PDFAbstract: We propose a method for computing any Gelfand-Dickey tau function living in Segal-Wilson Grassmannian as the asymptotics of block Toeplitz determinant associated to a certain class of symbols. Also truncated block Toeplitz determinants associated to the same symbols are shown to be tau function for rational reductions of KP. Connection with Riemann-Hilbert problems is investigated both from the point of view of integrable systems and block Toeplitz operator theory. Examples of applications to algebro-geometric solutions are given.
Submission history
From: Mattia Cafasso [view email][v1] Wed, 14 Nov 2007 17:16:24 UTC (25 KB)
[v2] Sun, 25 Nov 2007 16:50:47 UTC (26 KB)
Current browse context:
math.FA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.