General Relativity and Quantum Cosmology
[Submitted on 14 Nov 2007 (v1), last revised 21 Mar 2008 (this version, v2)]
Title:Developments in Black Hole Research: Classical, Semi-classical, and Quantum
View PDFAbstract: The possible existence of black holes has fascinated scientists at least since Michell and Laplace's proposal that a gravitating object could exist from which light could not escape. In the 20th century, in light of the general theory of relativity, it became apparent that, were such objects to exist, their structure would be far richer than originally imagined. Today, astronomical observations strongly suggest that either black holes, or objects with similar properties, not only exist but may well be abundant in our universe. In light of this, black hole research is now not only motivated by the fascinating theoretical properties such objects must possess but also as an attempt to better understand the universe around us. We review here some selected developments in black hole research, from a review of its early history to current topics in black hole physics research. Black holes have been studied at all levels; classically, semi-classically, and more recently, as an arena to test predictions of candidate theories of quantum gravity. We will review here progress and current research at all these levels as well as discuss some proposed alternatives to black holes.
Submission history
From: Andrew DeBenedictis [view email][v1] Wed, 14 Nov 2007 19:25:27 UTC (579 KB)
[v2] Fri, 21 Mar 2008 01:01:53 UTC (581 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.