Astrophysics
[Submitted on 16 Nov 2007]
Title:Statistical properties of extragalactic sources in the New Extragalactic WMAP Point Source (NEWPS) catalogue
View PDFAbstract: We present results on spectral index distributions, number counts, redshift distribution and other general statistical properties of extragalactic point sources in the NEWPS5 sample López-Caniego et al. (2007). The flux calibrations at all the WMAP channels have been reassessed both by comparison with ground based observations and through estimates of the effective beam areas. The two methods yield consistent statistical correction factors. A search of the NED has yielded optical identifications for 89% of sources in the complete sub-sample of 252 sources with S/N>5 and S>1.1 Jy at 23 GHz; 5 sources turned out to be Galactic and were removed. The NED also yielded redshifts for 92% of the extragalactic sources at |b|>10deg. Their distribution was compared with model predictions; the agreement is generally good but a possible discrepancy is noted. Using the 5 GHz fluxes from the GB6 or PMN surveys, we find that 76% of the 191 extragalactic sources with S_23GHz>1.3,Jy can be classified as flat-spectrum sources between 5 and 23 GHz. A spectral steepening is observed at higher frequencies: only 59% of our sources are still flat-spectrum sources between 23 and 61 GHz and the average spectral indexes steepen from <alpha_5^23>= 0.01\pm 0.03 to <alpha_41^61>= 0.37\pm 0.03. We think, however, that the difference may be due to a selection effect. The source number counts have a close to Euclidean slope and are in good agreement with the predictions of the cosmological evolution model by De Zotti et al. (2005). The observed spectral index distributions were exploited to get model-independent extrapolations of counts to higher frequencies. The risks of such operations are discussed and reasons of discrepancies with other recent estimates are clarified.
Submission history
From: Joaquín González-Nuevo [view email][v1] Fri, 16 Nov 2007 15:07:24 UTC (34 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.