General Relativity and Quantum Cosmology
[Submitted on 19 Nov 2007 (v1), last revised 4 Jan 2008 (this version, v2)]
Title:Modulation of the gravitational waveform by the effect of radiation reaction
View PDFAbstract: When we calculate gravitational waveforms from extreme-mass-ratio inspirals (EMRIs) by metric perturbation, it is a common strategy to use the adiabatic approximation. Under that approximation, we first calculate the linear metric perturbation induced by geodesics orbiting a black hole, then we calculate the adiabatic evolution of the parameters of geodesics due to the radiation reaction effect through the calculation of the self-force. This procedure is considered to be reasonable, however, there is no direct proof that it can actually produce the correct waveform we would observe. In this paper, we study the formal expression of the second order metric perturbation and show that it be expressed as the linear metric perturbation modulated by the adiabatic evolution of the geodesic. This evidence supports the assumption that the adiabatic approximation can produce the correct waveform, and that the adiabatic expansion we propose in Ref.\cite{adi} is an appropriate perturbation expansion for studying the radiation reaction effect on the gravitational waveform.
Submission history
From: Yasushi Mino [view email][v1] Mon, 19 Nov 2007 23:37:31 UTC (14 KB)
[v2] Fri, 4 Jan 2008 18:42:16 UTC (14 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.