General Relativity and Quantum Cosmology
[Submitted on 22 Nov 2007 (v1), last revised 7 Dec 2007 (this version, v2)]
Title:Macroscopic and Microscopic Paradigms for the Torsion Field: from the Test-Particle Motion to a Lorentz Gauge Theory
View PDFAbstract: Torsion represents the most natural extension of General Relativity and it attracted interest over the years in view of its link with fundamental properties of particle motion. The bulk of the approaches concerning the torsion dynamics focus their attention on their geometrical nature and they are naturally led to formulate a non-propagating theory.
Here we review two different paradigms to describe the role of the torsion field, as far as a propagating feature of the resulting dynamics is concerned. However, these two proposals deal with different pictures, i.e., a macroscopic approach, based on the construction of suitable potentials for the torsion field, and a microscopic approach, which relies on the identification of torsion with the gauge field associated with the local Lorentz symmetry. We analyze in some detail both points of view and their implications on the coupling between torsion and matter will be investigated. In particular, in the macroscopic case, we analyze the test-particle motion to fix the physical trajectory, while, in the microscopic approach, a natural coupling between torsion and the spin momentum of matter fields arises.
Submission history
From: Nakia Carlevaro [view email][v1] Thu, 22 Nov 2007 10:37:48 UTC (15 KB)
[v2] Fri, 7 Dec 2007 12:11:30 UTC (13 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.