General Relativity and Quantum Cosmology
[Submitted on 22 Nov 2007]
Title:Cosmic acceleration from interaction of ordinary fluids
View PDFAbstract: Cosmological models with two interacting fluids, each satisfying the strong energy condition, are studied in the framework of classical General Relativity. If the interactions are phenomenologically described by a power law in the scale factor, the two initial interacting fluids can be equivalently substituted by two non interacting effective fluids, where one of them may violate the strong energy condition and/or have negative energy density. Analytical solutions of the Friedmann equations of this general setting are obtained and studied. One may have, depending on the scale where the interaction becomes important, non singular universes with early accelerated phase, or singular models with transition from decelerated to accelerated expansion at large scales. Among the first, there are bouncing models where contraction is stopped by the interaction. In the second case, one obtains dark energy expansion rates without dark energy, like $\Lambda$CDM or phantomic accelerated expansions without cosmological constant or phantoms, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.