General Relativity and Quantum Cosmology
[Submitted on 26 Nov 2007 (v1), last revised 13 May 2008 (this version, v2)]
Title:Holographic dark energy: quantum correlations against thermodynamical description
View PDFAbstract: Classical and quantum entropic properties of holographic dark energy (HDE) are considered in view of the fact that its entropy is far more restrictive than the entropy of a black hole of the same size. In cosmological settings (in which HDE is promoted to a plausible candidate for being the dark energy of the universe), HDE should be viewed as a combined state composed of the event horizon and the stuff inside the horizon. By any interaction of the subsystems, the horizon and the interior become entangled, raising thereby a possibility that their quantum correlations be responsible for the almost purity of the combined state. Under this circumstances, the entanglement entropy is almost the same for both subsystems, being also of the same order as the thermal (coarse grained) entropy of the interior or the horizon. In the context of thermodynamics, however, only additive coarse grained entropies matter, so we use these entropies to test the generalized second law (GSL) of gravitational thermodynamics in this framework. While we find that the original Li's model passes the GSL test for a special choice of parameters, in a saturated model with the choice for the IR cutoff in the form of the Hubble parameter, the GSL always breaks down.
Submission history
From: Raul Horvat [view email][v1] Mon, 26 Nov 2007 14:23:52 UTC (8 KB)
[v2] Tue, 13 May 2008 09:05:29 UTC (8 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.