Physics > Atomic Physics
[Submitted on 27 Nov 2007]
Title:A study of the breakdown of the quasi-static approximation at high densities and its effect on the helium-like K ALPHA complex of nickel, iron, and calcium
View PDFAbstract: The General Spectral Modeling (GSM) code employs the quasi-static approximation, a standard, low-density methodology that assumes the ionization balance is separable from a determination of the excited-state populations that give rise to the spectra. GSM also allows for some states to be treated only as contributions to effective rates. While these two approximations are known to be valid at low densities, this work investigates using such methods to model high-density, non-LTE emission spectra and determines at what point the approximations break down by comparing to spectra produced by the LANL code ATOMIC which makes no such approximations. As both approximations are used by other astrophysical and low-density modeling codes, the results should be of broad interest. He-like K$\alpha$ emission spectra are presented for Ni, Fe, and Ca, in order to gauge the effect of both approximations employed in GSM. This work confirms that at and above the temperature of maximum abundance of the He-like ionization stage, the range of validity for both approximations is sufficient for modeling the low- and moderate-density regimes one typically finds in astrophysical and magnetically confined fusion plasmas. However, a breakdown does occur for high densities; we obtain quantitative limits that are significantly higher than previous works. This work demonstrates that, while the range of validity for both approximations is sufficient to predict the density-dependent quenching of the z line, the approximations break down at higher densities. Thus these approximations should be used with greater care when modeling high-density plasmas such as those found in inertial confinement fusion and electromagnetic pinch devices.
Current browse context:
physics.atom-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.