General Relativity and Quantum Cosmology
[Submitted on 27 Nov 2007]
Title:Coframe geometry and gravity
View PDFAbstract: The possible extensions of GR for description of fermions on a curved space, for supergravity and for loop quantum gravity require a richer set of 16 independent variables. These variables can be assembled in a coframe field, i.e., a local set of four linearly independent 1-forms. In the ordinary formulation, the coframe gravity does not have any connection to a specific geometry even being constructed from the geometrical meaningful objects. A geometrization of the coframe gravity is an aim of this paper. We construct a complete class of the coframe connections which are linear in the first order derivatives of the coframe field on an $n$ dimensional manifolds with and without a metric. The subclasses of the torsion-free, metric-compatible and flat connections are derived. We also study the behavior of the geometrical structures under local transformations of the coframe. The remarkable fact is an existence of a subclass of connections which are invariant when the infinitesimal transformations satisfy the Maxwell-like system of equations. In the framework of the coframe geometry construction, we propose a geometrical action for the coframe gravity. It is similar to the Einstein-Hilbert action of GR, but the scalar curvature is constructed from the general coframe connection. We show that this geometric Lagrangian is equivalent to the coframe Lagrangian up to a total derivative term. Moreover there is a family of coframe connections which Lagrangian does not include the higher order terms at all. In this case, the equivalence is complete.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.