Astrophysics
[Submitted on 27 Nov 2007 (v1), last revised 28 Dec 2007 (this version, v2)]
Title:A 3D Automated Classification Scheme for the TAUVEX data pipeline
View PDFAbstract: In order to develop a pipeline for automated classification of stars to be observed by the TAUVEX ultraviolet space Telescope, we employ an artificial neural network (ANN) technique for classifying stars by using synthetic spectra in the UV region from 1250Åto 3220Åas the training set and International Ultraviolet Explorer (IUE) low resolution spectra as the test set. Both the data sets have been pre-processed to mimic the observations of the TAUVEX ultraviolet imager. We have successfully classified 229 stars from the IUE low resolution catalog to within 3-4 spectral sub-class using two different simulated training spectra, the TAUVEX spectra of 286 spectral types and UVBLUE spectra of 277 spectral types. Further, we have also been able to obtain the colour excess (i.e. E(B-V) in magnitude units) or the interstellar reddening for those IUE spectra which have known reddening to an accuracy of better than 0.1 magnitudes. It has been shown that even with the limitation of data from just photometric bands, ANNs have not only classified the stars, but also provided satisfactory estimates for interstellar extinction. The ANN based classification scheme has been successfully tested on the simulated TAUVEX data pipeline. It is expected that the same technique can be employed for data validation in the ultraviolet from the virtual observatories. Finally, the interstellar extinction estimated by applying the ANNs on the TAUVEX data base would provide an extensive extinction map for our galaxy and which could in turn be modeled for the dust distribution in the galaxy.
Submission history
From: Archana Bora [view email][v1] Tue, 27 Nov 2007 13:28:09 UTC (884 KB)
[v2] Fri, 28 Dec 2007 08:00:44 UTC (910 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.