Astrophysics
[Submitted on 28 Nov 2007 (v1), last revised 12 Dec 2007 (this version, v2)]
Title:Evidence in Support of the Local Quasar Model from Inner Jet Structure and Angular Motions in Radio Loud AGN
View PDFAbstract: Radio loud jetted sources with and without extended inner jet structure show good agreement with the simple ballistic ejection scenario proposed in the decreasing intrinsic redshift (DIR) model, where, because of projection effects, those that show the most obvious extended structure and large angular motions are assumed to have jets that lie close to the plane of the sky, and those with little or no structure and small angular motions are assumed to have jets that are coming almost directly towards us. This simple model also predicts several other relations seen in the raw data that, in some cases, may be less easily explained if the redshifts are cosmological and relativistic ejection is required. In particular, for radio-loud sources the source number density is found to be high for sources that are not Doppler boosted but low for highly boosted sources. This is opposite to what is expected, suggesting that Doppler boosting may not be involved at all, which would be in agreement with the DIR model. If so, the reality of relativistic beaming in quasar jets, the assumption of which has been the very foundation of the superluminal motion explanation in the cosmological redshift (CR) model, would then be questioned.
Submission history
From: Morley Bell [view email][v1] Wed, 28 Nov 2007 16:30:33 UTC (189 KB)
[v2] Wed, 12 Dec 2007 18:18:03 UTC (206 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.