Astrophysics
[Submitted on 29 Nov 2007 (v1), last revised 13 Jul 2008 (this version, v3)]
Title:The Peculiar Type Ib Supernova 2006jc: A WCO Wolf-Rayet Star Explosion
View PDFAbstract: We present a theoretical model for Type Ib supernova (SN) 2006jc. We calculate the evolution of the progenitor star, hydrodynamics and nucleosynthesis of the SN explosion, and the SN bolometric light curve (LC). The synthetic bolometric LC is compared with the observed bolometric LC constructed by integrating the UV, optical, near-infrared (NIR), and mid-infrared (MIR) fluxes. The progenitor is assumed to be as massive as $40M_\odot$ on the zero-age main-sequence. The star undergoes extensive mass loss to reduce its mass down to as small as $6.9M_\odot$, thus becoming a WCO Wolf-Rayet star. The WCO star model has a thick carbon-rich layer, in which amorphous carbon grains can be formed. This could explain the NIR brightening and the dust feature seen in the MIR spectrum. We suggest that the progenitor of SN 2006jc is a WCO Wolf-Rayet star having undergone strong mass loss and such massive stars are the important sites of dust formation. We derive the parameters of the explosion model in order to reproduce the bolometric LC of SN 2006jc by the radioactive decays: the ejecta mass $4.9M_\odot$, hypernova-like explosion energy $10^{52}$ ergs, and ejected $^{56}$Ni mass $0.22M_\odot$. We also calculate the circumstellar interaction and find that a CSM with a flat density structure is required to reproduce the X-ray LC of SN 2006jc. This suggests a drastic change of the mass-loss rate and/or the wind velocity that is consistent with the past luminous blue variable (LBV)-like event.
Submission history
From: Nozomu Tominaga [view email][v1] Thu, 29 Nov 2007 19:31:05 UTC (365 KB)
[v2] Tue, 4 Dec 2007 19:44:01 UTC (366 KB)
[v3] Sun, 13 Jul 2008 18:21:15 UTC (372 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.