Astrophysics
[Submitted on 29 Nov 2007]
Title:Corotation Resonance and Diskoseismology Modes of Black Hole Accretion Disks
View PDFAbstract: We demonstrate that the corotation resonance affects only some non-axisymmetric g-mode oscillations of thin accretion disks, since it is located within their capture zones. Using a more general (weaker radial WKB approximation) formulation of the governing equations, such g-modes, treated as perfect fluid perturbations, are shown to formally diverge at the position of the corotation resonance. A small amount of viscosity adds a small imaginary part to the eigenfrequency which has been shown to induce a secular instability (mode growth) if it acts hydrodynamically. The g-mode corotation resonance divergence disappears, but the mode magnitude can remain largest at the place of the corotation resonance. For the known g-modes with moderate values of the radial mode number and axial mode number (and any vertical mode number), the corotation resonance lies well outside their trapping region (and inside the innermost stable circular orbit), so the observationally relevant modes are unaffected by the resonance. The axisymmetric g-mode has been seen by Reynolds & Miller in a recent inviscid hydrodynamic accretion disk global numerical simulation. We also point out that the g-mode eigenfrequencies are approximately proportional to m for axial mode numbers |m|>0.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.