Astrophysics
[Submitted on 30 Nov 2007]
Title:Study of errors in strong gravitational lensing
View PDFAbstract: We examine the accuracy of strong gravitational lensing determinations of the mass of galaxy clusters by comparing the conventional approach with the numerical integration of the fully relativistic null geodesic equations in the case of weak gravitational perturbations on Robertson-Walker metrics. In particular, we study spherically-symmetric, three-dimensional singular isothermal sphere models and the three-dimensional matter distribution of Navarro et al. (1997), which are both commonly used in gravitational lensing studies. In both cases we study two different methods for mass-density truncation along the line of sight: hard truncation and conventional (no truncation). We find that the relative error introduced in the total mass by the thin lens approximation alone is less than 0.3% in the singular isothermal sphere model, and less than 2% in the model of Navarro et al. (1997). The removal of hard truncation introduces an additional error of the same order of magnitude in the best case, and up to an order of magnitude larger in the worst case studied. Our results ensure that the future generation of precision cosmology experiments based on lensing studies will not require the removal of the thin-lens assumption, but they may require a careful handling of truncation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.