Astrophysics
[Submitted on 30 Nov 2007]
Title:Rotation and Macroturbulence in Metal-poor Field Red Giant and Red Horizontal Branch Stars
View PDFAbstract: We report the results for rotational velocities, Vrot sin i, and macroturbulence dispersion, zeta(RT), for 12 metal-poor field red giant branch stars and 7 metal-poor field red horizontal branch stars. The results are based on Fourier transform analyses of absorption line profiles from high-resolution (R ~ 120,000), high-S/N (~ 215 per pixel) spectra obtained with the Gecko spectrograph at CFHT. We find that the zeta(RT) values for the metal-poor RGB stars are very similar to those for metal-rich disk giants studied earlier by Gray and his collaborators. Six of the RGB stars have small rotational values, less than 2.0 km/sec, while five show significant rotation, over 3 km/sec. The fraction of rapidly rotating RHB stars is somewhat lower than found among BHB stars. We devise two empirical methods to translate the line-broadening results obtained by Carney et al. (2003, 2008) into Vrot sin i for all the RGB and RHB stars they studied. Binning the RGB stars by luminosity, we find that most metal-poor field RGB stars show no detectable sign, on average, of rotation. However, the most luminous stars, with M(V) <= -1.5, do show net rotation, with mean values of 2 to 4 km/sec, depending on the algorithm employed, and these stars also show signs of radial velocity jitter and mass loss.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.