Astrophysics
[Submitted on 30 Nov 2007 (v1), last revised 31 Mar 2008 (this version, v4)]
Title:Merger Histories of Galaxy Halos and Implications for Disk Survival
View PDFAbstract: We study the merger histories of galaxy dark matter halos using a high resolution LCDM N-body simulation. Our merger trees follow ~17,000 halos with masses M_0 = (10^11--10^13) Msun at z=0 and track accretion events involving objects as small as m = 10^10 Msun. We find that mass assembly is remarkably self-similar in m/M_0, and dominated by mergers that are ~10% of the final halo mass. While very large mergers, m > 0.4 M_0, are quite rare, sizeable accretion events, m ~ 0.1 M_0, are common. Over the last 10 Gyr, an overwhelming majority (~95%) of Milky Way-sized halos with M_0 = 10^12 Msun have accreted at least one object with greater total mass than the Milky Way disk (m > 5x10^10 Msun), and approximately 70% have accreted an object with more than twice that mass (m > 10^11 Msun). Our results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a CDM universe. In order to achieve a ~70% disk-dominated fraction in Milky Way-sized CDM halos, mergers involving m ~ 2x10^11 Msun objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.
Submission history
From: Kyle Stewart [view email][v1] Fri, 30 Nov 2007 20:56:39 UTC (159 KB)
[v2] Fri, 30 Nov 2007 22:43:46 UTC (159 KB)
[v3] Tue, 4 Dec 2007 08:00:44 UTC (159 KB)
[v4] Mon, 31 Mar 2008 20:14:12 UTC (161 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.