Mathematics > Numerical Analysis
[Submitted on 9 Dec 2007]
Title:Signal Recovery from Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit
View PDFAbstract: We demonstrate a simple greedy algorithm that can reliably recover a d-dimensional vector v from incomplete and inaccurate measurements x. Here our measurement matrix is an N by d matrix with N much smaller than d. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation of the greedy methods with the strong guarantees of the convex programming methods. For any measurement matrix that satisfies a Uniform Uncertainty Principle, ROMP recovers a signal with O(n) nonzeros from its inaccurate measurements x in at most n iterations, where each iteration amounts to solving a Least Squares Problem. The noise level of the recovery is proportional to the norm of the error, up to a log factor. In particular, if the error vanishes the reconstruction is exact. This stability result extends naturally to the very accurate recovery of approximately sparse signals.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.