Quantitative Finance > Trading and Market Microstructure
[Submitted on 20 Dec 2007]
Title:On Financial Markets Based on Telegraph Processes
View PDFAbstract: The paper develops a new class of financial market models. These models are based on generalized telegraph processes: Markov random flows with alternating velocities and jumps occurring when the velocities are switching. While such markets may admit an arbitrage opportunity, the model under consideration is arbitrage-free and complete if directions of jumps in stock prices are in a certain correspondence with their velocity and interest rate behaviour. An analog of the Black-Scholes fundamental differential equation is derived, but, in contrast with the Black-Scholes model, this equation is hyperbolic. Explicit formulas for prices of European options are obtained using perfect and quantile hedging.
Submission history
From: Alexander Melnikov [view email] [via VTEX proxy][v1] Thu, 20 Dec 2007 14:05:41 UTC (80 KB)
Current browse context:
q-fin.TR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.