Mathematics > Rings and Algebras
[Submitted on 21 Dec 2007 (v1), last revised 31 Dec 2007 (this version, v2)]
Title:Simple algebras of Gelfand-Kirillov dimension two
View PDFAbstract: Let $k$ be a field. We show that a finitely generated simple Goldie $k$-algebra of quadratic growth is noetherian and has Krull dimension 1. Thus a simple algebra of quadratic growth is left noetherian if and only if it is right noetherian. As a special case, we see that if A is a finitely generated simple domain of quadratic growth then A is noetherian and by a result of Stafford every right and left ideal is generated by at most two elements. We conclude by posing questions and giving examples in which we consider what happens when the hypotheses are relaxed.
Submission history
From: Jason Bell [view email][v1] Fri, 21 Dec 2007 20:35:08 UTC (6 KB)
[v2] Mon, 31 Dec 2007 21:14:43 UTC (6 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.