High Energy Physics - Theory
[Submitted on 30 Jan 2008 (v1), last revised 5 Aug 2008 (this version, v2)]
Title:Anomaly-Mediation and Sequestering from a Higher-Dimensional viewpoint
View PDFAbstract: We study a five-dimensional supergravity model with boundary-localized visible sector exhibiting anomaly-mediated supersymmetry breaking, in which the central requirements of sequestering and radius stabilization are achieved perturbatively. This makes it possible to understand these various mechanisms in a more integrated and transparent fashion, mostly from the higher-dimensional viewpoint. Local supersymmetry, in the presence of visible sector quantum effects, is enforced by the formalism of the five-dimensional superconformal tensor calculus. The construction results in only mild warping, which allows a natural supersymmetry-breaking mediation mechanism of (finite) boundary-to-boundary gravity loops to co-dominate with anomaly-mediation, thereby solving the latter's tachyonic slepton problem. We make the non-trivial check that this can occur while dangerous loops of stabilizing fields remain highly suppressed. Our discussion is a well-controlled starting point for considering other generalizations of anomaly-mediation, or for string theory realizations.
Submission history
From: Minho Son [view email][v1] Wed, 30 Jan 2008 22:47:52 UTC (31 KB)
[v2] Tue, 5 Aug 2008 17:55:27 UTC (31 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.