Quantitative Biology > Tissues and Organs
[Submitted on 20 Jun 2008 (v1), last revised 18 Nov 2008 (this version, v5)]
Title:New Mechanics of Spinal Injury
View PDFAbstract: The prediction and prevention of spinal injury is an important aspect of preventive health science. The spine, or vertebral column, represents a chain of 26 movable vertebral bodies, joint together by transversal viscoelastic intervertebral discs and longitudinal elastic tendons. This paper proposes a new locally-coupled loading-rate hypothesis}, which states that the main cause of both soft- and hard-tissue spinal injury is a localized Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes a localized spine in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of the local spinal motions and derive from it the corresponding coupled SE(3)-jolt dynamics. The SE(3)-jolt is the main cause of two basic forms of spinal injury: (i) hard-tissue injury of local translational dislocations; and (ii) soft-tissue injury of local rotational disclinations. Both the spinal dislocations and disclinations, as caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum model.
Keywords: localized spinal injury, coupled loading-rate hypothesis, coupled Newton-Euler dynamics, Euclidean jolt dynamics, spinal dislocations and disclinations
Submission history
From: Vladimir Ivancevic [view email][v1] Fri, 20 Jun 2008 08:08:10 UTC (76 KB)
[v2] Fri, 4 Jul 2008 03:31:30 UTC (76 KB)
[v3] Thu, 10 Jul 2008 02:38:32 UTC (76 KB)
[v4] Mon, 4 Aug 2008 04:59:08 UTC (77 KB)
[v5] Tue, 18 Nov 2008 02:24:45 UTC (77 KB)
Current browse context:
q-bio.TO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.