Quantitative Biology > Populations and Evolution
[Submitted on 22 Jun 2008]
Title:Detecting Robust Patterns in the Spread of Epidemics: A Case Study of Influenza in the United States and France
View PDFAbstract: In this paper, the authors develop a method of detecting correlations between epidemic patterns in different regions that are due to human movement and introduce a null model in which the travel-induced correlations are cancelled. They apply this method to the well-documented cases of seasonal influenza outbreaks in the United States and France. In the United States (using data for 1972-2002), the authors observed strong short-range correlations between several states and their immediate neighbors, as well as robust long-range spreading patterns resulting from large domestic air-traffic flows. The stability of these results over time allowed the authors to draw conclusions about the possible impact of travel restrictions on epidemic spread. The authors also applied this method to the case of France (1984-2004) and found that on the regional scale, there was no transportation mode that clearly dominated disease spread. The simplicity and robustness of this method suggest that it could be a useful tool for detecting transmission channels in the spread of epidemics.
Current browse context:
q-bio.PE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.