Quantitative Biology > Neurons and Cognition
[Submitted on 24 Jun 2008 (v1), last revised 18 Jul 2008 (this version, v2)]
Title:Information In The Non-Stationary Case
View PDFAbstract: Information estimates such as the ``direct method'' of Strong et al. (1998) sidestep the difficult problem of estimating the joint distribution of response and stimulus by instead estimating the difference between the marginal and conditional entropies of the response. While this is an effective estimation strategy, it tempts the practitioner to ignore the role of the stimulus and the meaning of mutual information. We show here that, as the number of trials increases indefinitely, the direct (or ``plug-in'') estimate of marginal entropy converges (with probability 1) to the entropy of the time-averaged conditional distribution of the response, and the direct estimate of the conditional entropy converges to the time-averaged entropy of the conditional distribution of the response. Under joint stationarity and ergodicity of the response and stimulus, the difference of these quantities converges to the mutual information. When the stimulus is deterministic or non-stationary the direct estimate of information no longer estimates mutual information, which is no longer meaningful, but it remains a measure of variability of the response distribution across time.
Submission history
From: Vincent Vu [view email][v1] Tue, 24 Jun 2008 20:13:08 UTC (83 KB)
[v2] Fri, 18 Jul 2008 23:29:00 UTC (84 KB)
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.