High Energy Physics - Theory
[Submitted on 22 Jul 2008 (v1), last revised 29 Jul 2008 (this version, v2)]
Title:The LHC String Hunter's Companion
View PDFAbstract: The mass scale of fundamental strings can be as low as few TeV/c^2 provided that spacetime extends into large extra dimensions. We discuss the phenomenological aspects of weakly coupled low mass string theory related to experimental searches for physics beyond the Standard Model at the Large Hadron Collider (LHC). We consider the extensions of the Standard Model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. We focus on the model-independent, universal features of low mass string theory. We compute, collect and tabulate the full-fledged string amplitudes describing all 2->2 parton scattering subprocesses at the leading order of string perturbation theory. We cast our results in a form suitable for the implementation of stringy partonic cross sections in the LHC data analysis. The amplitudes involving four gluons as well as those with two gluons plus two quarks do not depend on the compactification details and are completely model-independent. They exhibit resonant behavior at the parton center of mass energies equal to the masses of Regge resonances. The existence of these resonances is the primary signal of string physics and should be easy to detect. On the other hand, the four-fermion processes like quark-antiquark scattering include also the exchanges of heavy Kaluza-Klein and winding states, whose details depend on the form of internal geometry. They could be used as ``precision tests'' in order to distinguish between various compactification scenarios.
Submission history
From: Stephan Stieberger [view email][v1] Tue, 22 Jul 2008 12:26:02 UTC (500 KB)
[v2] Tue, 29 Jul 2008 11:08:05 UTC (500 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.