High Energy Physics - Theory
[Submitted on 30 Jul 2008 (v1), last revised 26 Nov 2008 (this version, v3)]
Title:Heavy Quark Potential at Finite Temperature Using the Holographic Correspondence
View PDFAbstract: We revisit the calculation of a heavy quark potential in N =4 supersymmetric Yang-Mills theory at finite temperature using the AdS/CFT correspondence. As is widely known, the potential calculated in the pioneering works of Rey et al. and Brandhuber et al. is zero for separation distances r between the quark and the anti-quark above a certain critical separation, at which the potential has a kink. We point out that by analytically continuing the string configurations into the complex plane, and using a slightly different renormalization subtraction, one obtains a smooth non-zero (negative definite) potential without a kink. The obtained potential also has a non-zero imaginary (absorptive) part for separations r > r_c = 0.870/\pi T . At large separations r the real part of the potential does not exhibit the exponential Debye falloff expected from perturbation theory and instead falls off as a power law, proportional to 1/r^4 for r > r_0 = 2.702 / \pi T.
Submission history
From: Javier L. Albacete [view email][v1] Wed, 30 Jul 2008 19:50:28 UTC (287 KB)
[v2] Tue, 12 Aug 2008 19:25:07 UTC (288 KB)
[v3] Wed, 26 Nov 2008 15:14:24 UTC (292 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.