Computer Science > Information Theory
[Submitted on 21 Jan 2009 (v1), last revised 23 Apr 2009 (this version, v2)]
Title:Statistical Performance Analysis of MDL Source Enumeration in Array Processing
View PDFAbstract: In this correspondence, we focus on the performance analysis of the widely-used minimum description length (MDL) source enumeration technique in array processing. Unfortunately, available theoretical analysis exhibit deviation from the simulation results. We present an accurate and insightful performance analysis for the probability of missed detection. We also show that the statistical performance of the MDL is approximately the same under both deterministic and stochastic signal models. Simulation results show the superiority of the proposed analysis over available results.
Submission history
From: Farzan Haddadi [view email][v1] Wed, 21 Jan 2009 07:26:05 UTC (20 KB)
[v2] Thu, 23 Apr 2009 10:27:45 UTC (27 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.