General Relativity and Quantum Cosmology
[Submitted on 29 May 2009 (v1), last revised 10 Jan 2020 (this version, v4)]
Title:Transport Equation Approach to Calculations of Hadamard Green functions and non-coincident DeWitt coefficients
View PDFAbstract:Building on an insight due to Avramidi, we provide a system of transport equations for determining key fundamental bi-tensors, including derivatives of the world-function, \sigma(x,x'), the square root of the Van Vleck determinant, \Delta^{1/2}(x,x'), and the tail-term, V(x,x'), appearing in the Hadamard form of the Green function. These bi-tensors are central to a broad range of problems from radiation reaction to quantum field theory in curved spacetime and quantum gravity. Their transport equations may be used either in a semi-recursive approach to determining their covariant Taylor series expansions, or as the basis of numerical calculations. To illustrate the power of the semi-recursive approach, we present an implementation in \textsl{Mathematica} which computes very high order covariant series expansions of these objects. Using this code, a moderate laptop can, for example, calculate the coincidence limit a_7(x,x) and V(x,x') to order (\sigma^a)^{20} in a matter of minutes. Results may be output in either a compact notation or in xTensor form. In a second application of the approach, we present a scheme for numerically integrating the transport equations as a system of coupled ordinary differential equations. As an example application of the scheme, we integrate along null geodesics to solve for V(x,x') in Nariai and Schwarzschild spacetimes.
Submission history
From: Barry Wardell [view email][v1] Fri, 29 May 2009 20:04:43 UTC (1,567 KB)
[v2] Fri, 25 Nov 2011 17:31:06 UTC (1,551 KB)
[v3] Tue, 2 Jul 2013 13:44:44 UTC (1,551 KB)
[v4] Fri, 10 Jan 2020 17:43:33 UTC (1,552 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.