Computer Science > Information Theory
[Submitted on 5 Aug 2009 (v1), last revised 5 Nov 2009 (this version, v2)]
Title:Performance analysis for sparse support recovery
View PDFAbstract: The performance of estimating the common support for jointly sparse signals based on their projections onto lower-dimensional space is analyzed. Support recovery is formulated as a multiple-hypothesis testing problem. Both upper and lower bounds on the probability of error are derived for general measurement matrices, by using the Chernoff bound and Fano's inequality, respectively. The upper bound shows that the performance is determined by a quantity measuring the measurement matrix incoherence, while the lower bound reveals the importance of the total measurement gain. The lower bound is applied to derive the minimal number of samples needed for accurate direction-of-arrival (DOA) estimation for a sparse representation based algorithm. When applied to Gaussian measurement ensembles, these bounds give necessary and sufficient conditions for a vanishing probability of error for majority realizations of the measurement matrix. Our results offer surprising insights into sparse signal recovery. For example, as far as support recovery is concerned, the well-known bound in Compressive Sensing with the Gaussian measurement matrix is generally not sufficient unless the noise level is low. Our study provides an alternative performance measure, one that is natural and important in practice, for signal recovery in Compressive Sensing and other application areas exploiting signal sparsity.
Submission history
From: Gongguo Tang [view email][v1] Wed, 5 Aug 2009 20:12:02 UTC (102 KB)
[v2] Thu, 5 Nov 2009 15:19:48 UTC (87 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.