Mathematical Physics
[Submitted on 6 Aug 2009]
Title:Theory of transformation for the diagonalization of quadratic Hamiltonians
View PDFAbstract: A theory of transformation is presented for the diagonalization of a Hamiltonian that is quadratic in creation and annihilation operators or in coordinates and momenta. It is the systemization and theorization of Dirac and Bogoliubov-Valatin transformations, and thus provides us an operational procedure to answer, in a direct manner, the questions as to whether a quadratic Hamiltonian is diagonalizable, whether the diagonalization is unique, and how the transformation can be constructed if the diagonalization exists. The underlying idea is to consider the dynamic matrix. Each quadratic Hamiltonian has a dynamic matrix of its own. The eigenvalue problem of the dynamic matrix determines the diagonalizability of the quadratic Hamiltonian completely. In brief, the theory ascribes the diagonalization of a quadratic Hamiltonian to the eigenvalue problem of its dynamic matrix, which is familiar to all of us. That makes it much easy to use. Applications to various physical systems are discussed, with especial emphasis on the quantum fields, such as Klein-Gordon field, phonon field, etc..
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.