Mathematics > Commutative Algebra
[Submitted on 12 Aug 2009 (v1), last revised 24 Aug 2011 (this version, v2)]
Title:Finite Groebner bases in infinite dimensional polynomial rings and applications
View PDFAbstract:We introduce the theory of monoidal Groebner bases, a concept which generalizes the familiar notion in a polynomial ring and allows for a description of Groebner bases of ideals that are stable under the action of a monoid. The main motivation for developing this theory is to prove finiteness theorems in commutative algebra and its applications. A major result of this type is that ideals in infinitely many indeterminates stable under the action of the symmetric group are finitely generated up to symmetry. We use this machinery to give new proofs of some classical finiteness theorems in algebraic statistics as well as a proof of the independent set conjecture of Hosten and the second author.
Submission history
From: Seth Sullivant [view email][v1] Wed, 12 Aug 2009 19:19:29 UTC (24 KB)
[v2] Wed, 24 Aug 2011 13:48:49 UTC (28 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.