Mathematics > Quantum Algebra
[Submitted on 11 Sep 2009 (v1), last revised 3 Nov 2010 (this version, v3)]
Title:Tensor products, characters, and blocks of finite-dimensional representations of quantum affine algebras at roots of unity
View PDFAbstract:We establish several results concerning tensor products, q-characters, and the block decomposition of the category of finite-dimensional representations of quantum affine algebras in the root of unity setting. In the generic case, a Weyl module is isomorphic to a tensor product of fundamental representations and this isomorphism was essential for establishing the block decomposition theorem. This is no longer true in the root of unity setting. We overcome the lack of such a tool by utilizing results on specialization of modules. Furthermore, we establish a sufficient condition for a Weyl module to be a tensor product of fundamental representations and prove that this condition is also necessary when the underlying simple Lie algebra is sl(2). We also study the braid group invariance of q-characters of fundamental representations.
Submission history
From: Dijana Jakelic [view email][v1] Fri, 11 Sep 2009 15:34:20 UTC (45 KB)
[v2] Wed, 30 Sep 2009 03:00:28 UTC (47 KB)
[v3] Wed, 3 Nov 2010 02:36:47 UTC (42 KB)
Current browse context:
math.QA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.