Mathematics > Functional Analysis
[Submitted on 11 Sep 2009]
Title:Representation of simple symmetric operators with deficiency indices (1,1) in de Branges space
View PDFAbstract: Recently it has been shown that any regular simple symmetric operator with deficiency indices (1,1) is unitarily equivalent to the operator of multiplication in a reproducing kernel Hilbert space of functions on the real line with the Kramer sampling property. This work has been motivated, in part, by potential applications to signal processing and mathematical physics. In this paper we exploit well-known results about de Branges-Rovnyak spaces and characteristic functions of symmetric operators to prove that any such a symmetric operator is in fact unitarily equivalent to multiplication by the independent variable in a de Branges space of entire functions. This leads to simple new results on the spectra of such symmetric operators, on when multiplication by z is densely defined in de Branges-Rovnyak spaces in the upper half plane, and to sufficient conditions for there to be an isometry from a given subspace of $L^2 (R, dv) onto a de Branges space of entire functions which acts as multiplication by a measurable function.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.