Mathematics > Combinatorics
[Submitted on 14 Sep 2009 (v1), last revised 30 Jul 2010 (this version, v2)]
Title:k-L(2,1)-Labelling for Planar Graphs is NP-Complete for k >= 4
View PDFAbstract:A mapping from the vertex set of a graph G = (V,E) into an interval of integers {0,...,k} is an L(2,1)-labelling of G of span k if any two adjacent vertices are mapped onto integers that are at least 2 apart, and every two vertices with a common neighbour are mapped onto distinct integers. It is known that for any fixed k >= 4, deciding the existence of such a labelling is an NP-complete problem while it is polynomial for k <= 3. For even k >= 8, it remains NP-complete when restricted to planar graphs. In this paper, we show that it remains NP-complete for any k >= 4 by reduction from Planar Cubic Two-Colourable Perfect Matching. Schaefer stated without proof that Planar Cubic Two-Colourable Perfect Matching is NP-complete. In this paper we give a proof of this.
Submission history
From: Steven Noble [view email][v1] Mon, 14 Sep 2009 18:36:35 UTC (21 KB)
[v2] Fri, 30 Jul 2010 14:31:34 UTC (20 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.