Quantum Physics
[Submitted on 5 Oct 2009 (v1), last revised 12 Jan 2010 (this version, v2)]
Title:Random tensor theory: extending random matrix theory to random product states
View PDFAbstract: We consider a problem in random matrix theory that is inspired by quantum information theory: determining the largest eigenvalue of a sum of p random product states in (C^d)^{otimes k}, where k and p/d^k are fixed while d grows. When k=1, the Marcenko-Pastur law determines (up to small corrections) not only the largest eigenvalue ((1+sqrt{p/d^k})^2) but the smallest eigenvalue (min(0,1-sqrt{p/d^k})^2) and the spectral density in between. We use the method of moments to show that for k>1 the largest eigenvalue is still approximately (1+sqrt{p/d^k})^2 and the spectral density approaches that of the Marcenko-Pastur law, generalizing the random matrix theory result to the random tensor case. Our bound on the largest eigenvalue has implications both for sampling from a particular heavy-tailed distribution and for a recently proposed quantum data-hiding and correlation-locking scheme due to Leung and Winter. Since the matrices we consider have neither independent entries nor unitary invariance, we need to develop new techniques for their analysis. The main contribution of this paper is to give three different methods for analyzing mixtures of random product states: a diagrammatic approach based on Gaussian integrals, a combinatorial method that looks at the cycle decompositions of permutations and a recursive method that uses a variant of the Schwinger-Dyson equations.
Submission history
From: Aram Harrow [view email][v1] Mon, 5 Oct 2009 18:35:13 UTC (279 KB)
[v2] Tue, 12 Jan 2010 20:05:51 UTC (101 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.