Mathematics > Probability
[Submitted on 20 Nov 2009]
Title:On averages of randomized class functions on the symmetric groups and their asymptotics
View PDFAbstract: The second author had previously obtained explicit generating functions for moments of characteristic polynomials of permutation matrices (n points). In this paper, we generalize many aspects of this situation. We introduce random shifts of the eigenvalues of the permutation matrices, in two different ways: independently or not for each subset of eigenvalues associated to the same cycle. We also consider vastly more general functions than the characteristic polynomial of a permutation matrix, by first finding an equivalent definition in terms of cycle-type of the permutation. We consider other groups than the symmetric group, for instance the alternating group and other Weyl groups. Finally, we compute some asymptotics results when n tends to infinity. This last result requires additional ideas: it exploits properties of the Feller coupling, which gives asymptotics for the lengths of cycles in permutations of many points.
Submission history
From: Paul-Olivier Dehaye [view email][v1] Fri, 20 Nov 2009 14:52:08 UTC (27 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.