Mathematics > Functional Analysis
[Submitted on 17 Dec 2009 (v1), last revised 22 Jan 2011 (this version, v3)]
Title:On the Rademacher maximal function
View PDFAbstract:This paper studies a new maximal operator introduced by Hytönen, McIntosh and Portal in 2008 for functions taking values in a Banach space. The L^p-boundedness of this operator depends on the range space; certain requirements on type and cotype are present for instance. The original Euclidean definition of the maximal function is generalized to sigma-finite measure spaces with filtrations and the L^p-boundedness is shown not to depend on the underlying measure space or the filtration. Martingale techniques are applied to prove that a weak type inequality is sufficient for L^p-boundedness and also to provide a characterization by concave functions.
Submission history
From: Mikko Kemppainen K [view email][v1] Thu, 17 Dec 2009 10:24:33 UTC (39 KB)
[v2] Mon, 15 Feb 2010 15:05:36 UTC (39 KB)
[v3] Sat, 22 Jan 2011 09:23:13 UTC (43 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.