Mathematics > Probability
[Submitted on 22 Dec 2009 (v1), last revised 2 Apr 2013 (this version, v2)]
Title:Brownian limits, local limits and variance asymptotics for convex hulls in the ball
View PDFAbstract:Schreiber and Yukich [Ann. Probab. 36 (2008) 363-396] establish an asymptotic representation for random convex polytope geometry in the unit ball $\mathbb{B}^d, d\geq2$, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of generalized paraboloid growth processes. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via these growth processes we establish local functional limit theorems for the properly scaled radius-vector and support functions of convex polytopes generated by high-density Poisson samples. We show that direct methods lead to explicit asymptotic expressions for the fidis of the properly scaled radius-vector and support functions. Generalized paraboloid growth processes, coupled with general techniques of stabilization theory, yield Brownian sheet limits for the defect volume and mean width functionals. Finally we provide explicit variance asymptotics and central limit theorems for the k-face and intrinsic volume functionals.
Submission history
From: Pierre Calka [view email] [via VTEX proxy][v1] Tue, 22 Dec 2009 08:41:05 UTC (138 KB)
[v2] Tue, 2 Apr 2013 08:06:53 UTC (218 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.