High Energy Physics - Theory
[Submitted on 26 Dec 2010]
Title:Non-Canonical Phase-Space Noncommutativity and the Kantowski-Sachs singularity for Black Holes
View PDFAbstract:We consider a cosmological model based upon a non-canonical noncommutative extension of the Heisenberg-Weyl algebra to address the thermodynamical stability and the singularity problem of both the Schwarzschild and the Kantowski-Sachs black holes. The interior of the black hole is modelled by a noncommutative extension of the Wheeler-DeWitt equation. We compute the temperature and entropy of a Kantowski-Sachs black hole and compare our results with the Hawking values. Again, the noncommutativity in the momenta sector allows us to have a minimum in the potential, which is relevant in order to apply the Feynman-Hibbs procedure. For Kantowski-Sachs black holes, the same model is shown to generate a non-unitary dynamics, predicting vanishing total probability in the neighborhood of the singularity. This result effectively regularizes the Kantowski-Sachs singularity and generalizes a similar result, previously obtained for the case of Schwarzschild black hole.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.