Quantum Physics
[Submitted on 1 Mar 2011 (v1), last revised 1 Nov 2011 (this version, v2)]
Title:Proposal for a quantum delayed-choice experiment
View PDFAbstract:Gedanken experiments are important conceptual tools in the quest to reconcile our classical intuition with quantum mechanics and nowadays are routinely performed in the laboratory. An important open question is the quantum behaviour of the controlling devices in such experiments. We propose a framework to analyse quantum-controlled experiments and illustrate the implications by discussing a quantum version of Wheeler's delayed-choice experiment. The introduction of a quantum-controlled device (i.e., quantum beamsplitter) has several consequences. First, it implies that we can measure complementary phenomena with a single experimental setup, thus pointing to a redefinition of complementarity principle. Second, a quantum control allows us to prove there are no consistent hidden-variable theories in which "particle" and "wave" are realistic properties. Finally, it shows that a photon can have a morphing behaviour between "particle" and "wave"; this further supports the conclusion that "particle" and "wave" are not realistic properties but merely reflect how we 'look' at the photon. The framework developed here can be extended to other experiments, particularly to Bell-inequality tests.
Submission history
From: Radu Ionicioiu [view email][v1] Tue, 1 Mar 2011 09:48:11 UTC (136 KB)
[v2] Tue, 1 Nov 2011 17:42:52 UTC (135 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.