Quantum Physics
[Submitted on 12 Mar 2011]
Title:Onset of a Quantum Phase Transition with a Trapped Ion Quantum Simulator
View PDFAbstract:A quantum simulator is a well controlled quantum system that can simulate the behavior of another quantum system which may require exponentially large classical computing resources to understand otherwise. In the 1980s, Feynman proposed the use of quantum logic gates on a standard controllable quantum system to efficiently simulate the behavior of a model Hamiltonian. Recent experiments using trapped ions and neutral atoms have realized quantum simulation of Ising model in presence of external magnetic fields, and showed almost arbitrary control in generating non-trivial Ising coupling patterns. Here we use laser-cooled trapped 171-Yb+ ions to simulate the emergence of magnetism in a system of interacting spins by implementing a fully-connected non-uniform ferromagnetic Ising model in a transverse magnetic field. To link this quantum simulation to condensed matter physics, we measure scalable correlation functions and order parameters appropriate for the description of larger systems, such as various moments of the magnetization. By increasing the Ising coupling strengths compared with the external field, the crossover from paramagnetism to ferromagnetic order sharpens as the system is scaled up from N = 2 to 9 trapped ion spins. This points toward the onset of a quantum phase transition that should become infinitely sharp as the system approaches the macroscopic scale. We compare the measured ground state order to theory, which may become intractable for non-uniform Ising couplings as the number of spins grows beyond 20- 30 and even NP complete for a fully-connected frustrated Ising model, making this experiment an important benchmark for large-scale quantum simulation.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.