Statistics > Applications
[Submitted on 15 Mar 2011]
Title:A framework for list representation, enabling list stabilization through incorporation of gene exchangeabilities
View PDFAbstract:Analysis of multivariate data sets from e.g. microarray studies frequently results in lists of genes which are associated with some response of interest. The biological interpretation is often complicated by the statistical instability of the obtained gene lists with respect to sampling variations, which may partly be due to the functional redundancy among genes, implying that multiple genes can play exchangeable roles in the cell. In this paper we use the concept of exchangeability of random variables to model this functional redundancy and thereby account for the instability attributable to sampling variations. We present a flexible framework to incorporate the exchangeability into the representation of lists. The proposed framework supports straightforward robust comparison between any two lists. It can also be used to generate new, more stable gene rankings incorporating more information from the experimental data. Using a microarray data set from lung cancer patients we show that the proposed method provides more robust gene rankings than existing methods with respect to sampling variations, without compromising the biological significance.
Submission history
From: Charlotte Soneson [view email][v1] Tue, 15 Mar 2011 10:37:10 UTC (1,107 KB)
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.