Quantum Physics
[Submitted on 18 Mar 2011 (v1), last revised 26 Jun 2012 (this version, v2)]
Title:Local solutions of Maximum Likelihood Estimation in Quantum State Tomography
View PDFAbstract:Maximum likelihood estimation is one of the most used methods in quantum state tomography, where the aim is to reconstruct the density matrix of a physical system from measurement results. One strategy to deal with positivity and unit trace constraints is to parameterize the matrix to be reconstructed in order to ensure that it is physical. In this case, the negative log-likelihood function in terms of the parameters, may have several local minima. In various papers in the field, a source of errors in this process has been associated to the possibility that most of these local minima are not global, so that optimization methods could be trapped in the wrong minimum, leading to a wrong density matrix. Here we show that, for convex negative log-likelihood functions, all local minima of the unconstrained parameterized problem are global, thus any minimizer leads to the maximum likelihood estimation for the density matrix. We also discuss some practical sources of errors.
Submission history
From: P. H. Souto Ribeiro Prof. [view email][v1] Fri, 18 Mar 2011 18:25:23 UTC (12 KB)
[v2] Tue, 26 Jun 2012 20:03:01 UTC (164 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.