Computer Science > Systems and Control
[Submitted on 29 Mar 2011]
Title:Converging an Overlay Network to a Gradient Topology
View PDFAbstract:In this paper, we investigate the topology convergence problem for the gossip-based Gradient overlay network. In an overlay network where each node has a local utility value, a Gradient overlay network is characterized by the properties that each node has a set of neighbors with the same utility value (a similar view) and a set of neighbors containing higher utility values (gradient neighbor set), such that paths of increasing utilities emerge in the network topology. The Gradient overlay network is built using gossiping and a preference function that samples from nodes using a uniform random peer sampling service. We analyze it using tools from matrix analysis, and we prove both the necessary and sufficient conditions for convergence to a complete gradient structure, as well as estimating the convergence time and providing bounds on worst-case convergence time. Finally, we show in simulations the potential of the Gradient overlay, by building a more efficient live-streaming peer-to-peer (P2P) system than one built using uniform random peer sampling.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.