Mathematics > Classical Analysis and ODEs
[Submitted on 30 Mar 2011 (v1), last revised 27 Feb 2012 (this version, v2)]
Title:$L^p$ Error Estimates for Approximation by Sobolev Splines and Wendland Functions on $\mathbb{R}^d$
View PDFAbstract:It is known that a Green's function-type condition may be used to derive rates for approximation by radial basis functions (RBFs). In this paper, we introduce a method for obtaining rates for approximation by functions which can be convolved with a finite Borel measure to form a Green's function. Following a description of the method, rates will be found for two classes of RBFs. Specifically, rates will be found for the Sobolev splines, which are Green's functions, and the perturbation technique will then be employed to determine rates for approximation by Wendland functions.
Submission history
From: John Ward [view email][v1] Wed, 30 Mar 2011 17:25:42 UTC (13 KB)
[v2] Mon, 27 Feb 2012 16:35:09 UTC (15 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.