Mathematics > Probability
[Submitted on 30 Mar 2011]
Title:An isoperimetric inequality for the Wiener sausage
View PDFAbstract:Let $(\xi(s))_{s\geq 0}$ be a standard Brownian motion in $d\geq 1$ dimensions and let $(D_s)_{s \geq 0}$ be a collection of open sets in $\R^d$. For each $s$, let $B_s$ be a ball centered at 0 with $\vol(B_s) = \vol(D_s)$. We show that $\E[\vol(\cup_{s \leq t}(\xi(s) + D_s))] \geq \E[\vol(\cup_{s \leq t}(\xi(s) + B_s))]$, for all $t$. In particular, this implies that the expected volume of the Wiener sausage increases when a drift is added to the Brownian motion.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.