Mathematics > Group Theory
[Submitted on 31 Mar 2011 (v1), last revised 13 Dec 2011 (this version, v3)]
Title:The classification of almost simple $\tfrac{3}{2}$-transitive groups
View PDFAbstract:A finite transitive permutation group is said to be 3/2-transitive if all the nontrivial orbits of a point stabilizer have the same size greater than 1. Examples include the 2-transitive groups, Frobenius groups and several other less obvious ones. We prove that 3/2-transitive groups are either affine or almost simple, and classify the latter. One of the main steps in the proof is an arithmetic result on the subdegrees of groups of Lie type in characteristic $p$: with some explicitly listed exceptions, every primitive action of such a group is either 2-transitive, or has a subdegree divisible by $p$.
Submission history
From: Michael Giudici [view email][v1] Thu, 31 Mar 2011 00:32:13 UTC (58 KB)
[v2] Wed, 16 Nov 2011 09:31:12 UTC (60 KB)
[v3] Tue, 13 Dec 2011 00:45:53 UTC (60 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.