Mathematics > Analysis of PDEs
[Submitted on 19 Jul 2012 (v1), last revised 19 Dec 2012 (this version, v3)]
Title:Eigenfunction statistics for a point scatterer on a three-dimensional torus
View PDFAbstract:In this paper we study eigenfunction statistics for a point scatterer (the Laplacian perturbed by a delta-potential) on a three-dimensional flat torus. The eigenfunctions of this operator are the eigenfunctions of the Laplacian which vanish at the scatterer, together with a set of new eigenfunctions (perturbed eigenfunctions). We first show that for a point scatterer on the standard torus all of the perturbed eigenfunctions are uniformly distributed in configuration space. Then we investigate the same problem for a point scatterer on a flat torus with some irrationality conditions, and show uniform distribution in configuration space for almost all of the perturbed eigenfunctions.
Submission history
From: Nadav Yesha [view email][v1] Thu, 19 Jul 2012 14:59:16 UTC (20 KB)
[v2] Thu, 30 Aug 2012 14:08:38 UTC (20 KB)
[v3] Wed, 19 Dec 2012 15:22:16 UTC (38 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.