Physics > Fluid Dynamics
[Submitted on 23 Jul 2012 (v1), last revised 11 Apr 2013 (this version, v3)]
Title:Resolvent methods for steady premixed flame shapes governed by the Zhdanov-Trubnikov equation
View PDFAbstract:Using pole decompositions as starting points, the one parameter (-1 =< c < 1) nonlocal and nonlinear Zhdanov-Trubnikov (ZT) equation for the steady shapes of premixed gaseous flames is studied in the large-wrinkle limit. The singular integral equations for pole densities are closely related to those satisfied by the spectral density in the O(n) matrix model, with n = -2(1 + c)/(1 - c). They can be solved via the introduction of complex resolvents and the use of complex analysis. We retrieve results obtained recently for -1 =< c =< 0, and we explain and cure their pathologies when they are continued naively to 0 < c < 1. Moreover, for any -1 =< c < 1, we derive closed-form expressions for the shapes of steady isolated flame crests, and then bicoalesced periodic fronts. These theoretical results fully agree with numerical resolutions. Open problems are evoked.
Submission history
From: Gaëtan Borot [view email][v1] Mon, 23 Jul 2012 14:52:16 UTC (547 KB)
[v2] Tue, 18 Sep 2012 10:17:39 UTC (1,225 KB)
[v3] Thu, 11 Apr 2013 08:35:46 UTC (546 KB)
Current browse context:
physics.flu-dyn
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.