Mathematics > Dynamical Systems
[Submitted on 24 Jul 2012]
Title:Isospectral Compression and Other Useful Isospectral Transformations of Dynamical Networks
View PDFAbstract:It is common knowledge that a key dynamical characteristic of a network is its spectrum (the collection of all eigenvalues of the network's weighted adjacency matrix). In \cite{BW10} we demonstrated that it is possible to reduce a network, considered as a graph, to a smaller network with fewer vertices and edges while preserving the spectrum (or spectral information) of the original network. This procedure allows for the introduction of new equivalence relations between networks, where two networks are spectrally equivalent if they can be reduced to the same network. Additionally, using this theory it is possible to establish whether a network, modeled as a dynamical system, has a globally attracting fixed point (is strongly synchronizing). In this paper we further develop this theory of isospectral network transformations and demonstrate that our procedures are applicable to families of parameterized networks and networks of arbitrary size.
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.